

1

Development of Electronic Acquisition Model for Project Scheduling
(e-AMPS) Using Java-XML

Will Y. Lin

Ph. D. Candidate, Dept. of Civil Engrg., National Taiwan University,

 Taipei 10617, Taiwan, E-mail: will@ce.ntu.edu.tw

Abstract: During the construction phase, participants in a multi-contract project acquire external
real-time scheduling information from other involved parties and use this to make appropriate
decisions in regard to project control. There are two major obstacles to project participants gaining
efficient access to external information in a distributed data environment: (1) the variety of data
structures that project members may use, and (2) lack of an automatic mechanism for data
acquisition. Based on the ontology defined by eXtensible markup language Schema (XML Schema)
and an automatic mechanism called Message Transfer Chain (MTC), an Electronic Acquisition
Model for Project Scheduling (e-AMPS) centralized in an information agent, Message Agent (MA),
was developed. Each participant equips a Message Agent as his unique information window to
automatically acquire external information and provide other participants with scheduling
information as well. The ultimate goal of this study is to build an automatic communication
environment for multi-contract projects to solve the abovementioned difficulties, and thus achieve
effective communication among project participants.

Keywords: Internet; WWW; Project Management; Intelligent Agent; Information Integration

Introduction

Most scheduling theories take into account a
variety of situations, such as weather, site
layouts and so on, according to available
information while scheduling to produce a
“perfect” schedule, which seems to forecast the
future very well. However, due to a large
number of construction uncertainties before the
project starts, such as material shortages and
interference between two tasks of different
subcontractors, it is common that the initial
schedule has such a variance with the real
condition of construction that some planned
tasks cannot be carried out accordingly. Recent
planning-related research, such as Lean
construction suggests that schedules should be
updated adequately and constantly after the
construction starts, according to the real-time
engineering information available to keep
themselves concurrent and useful. In most
multi-contract projects, however, it’s common
for 80-90% of the tasks to be performed by
subcontractors such that scheduling for these
projects is a cooperative task which requires
many project members to take part in. In order
to realize the continuous scheduling suggested
by Lean construction under this circumstance,

it’s necessary for these subcontractors to
“dynamically communicate” together.

Communication in construction industry
during construction phase is extremely
complex. In terms of information technology,
communication can be simplified as the
exchange and reuse of information or
messages between two independent parties. In
this sense, to automate the communication
among construction project members implies
to automate the exchange and reuse of
information or messages. The exchange and
reuse of engineering information have been an
issue in the field of automation in construction
since information technologies were first
introduced in 70’s. Much research and related
applications have also been developed to
achieving all kinds of automation in
communication. However, there still are two
major obstacles to automate the continuous
and collaborative scheduling for multi-contract
projects: (1) the variety of data structures for
scheduling that project members may use, and
(2) the lack of an automatic mechanism for
data acquisition in such a multi-user workplace
for most multi-contract projects.

2

Based on the ontology defined by the
eXtensible markup language Schema for
Scheduling (XSS), the Data Acquisition
Language for Scheduling (DALS), the
Hierarchy Searching Algorithm (HSA), and an
automatic mechanism called Message Transfer
Chain (MTC), an Electronic Acquisition
Model for Project Scheduling (e-AMPS)
centralized in an information agent, Message
Agent (MA), was developed. Each participant
equips a Message Agent as his unique
information window to automatically acquire
external information and provide other
participants with scheduling information as
well. The ultimate goal of this study is to build
an agent-based communication environment
for multi-contract projects to solve the
above-mentioned difficulties in automating
communication in a multi-user workplace, and
thus realize continuous and collaborative
scheduling.

Architecture of e-AMPS

To solve the difficulties involved in sharing
scheduling information among project
participants in a data-distributed environment,
an agent-based communication environment
called Electronic Acquisition Model for
Project Scheduling (e-AMPS) has been
developed. The model is centralized in an
information agent called Message Agent.
Basically, Message Agent is a computer
program that deals with all messaging tasks
involved in automatic communication, and will
be introduced in the following sections. Each
participant in the same project, named a Host
or Contact Node in the following paragraphs,
equips a Message Agent as a unique
information window so that Message Agents in
the same project can automatically
communicate with each other. In this section,
we introduce the basic framework of e-AMPS
and the functions of Message Agent in order to
give an overall picture of the proposed
concepts. Figure 1 illustrates the complete
architecture of e-AMPS. The complete
automatic communication consists of two
different levels of replying to the imported
requests: Data-retrieving level and
Decision-making level. In this paper, we only
focus on the Data-retrieving level. However,
the components within the Decision-making
level are also addressed to some extent in this
section to help draw a more complete picture

of our model. The complete framework of
e-AMPS consists of five major components:
Ontology base, Message Agent (MA), Open
Data Repository, DALS-speaking Decision
Support Systems for Scheduling, and Message
Queues [1].

Message
Agent

Ontology
Base

Open Data
Repository

Request
Queue

Message
Queue

Response
Queue

Decision
Support
Systems

Filter & transferRegular check

Regular checkGenerate

Regular
check

Query

Match

Decision-Making
Level

Data-Retrieving
Level

Message
Agent

Ontology
Base

Open Data
Repository

Request
Queue

Message
Queue

Response
Queue

Decision
Support
Systems

Filter & transferRegular check

Regular checkGenerate

Regular
check

Query

Match

Message
Agent

Ontology
Base

Open Data
Repository

Request
Queue

Message
Queue

Response
Queue

Decision
Support
Systems

Filter & transferRegular check

Regular checkGenerate

Regular
check

Query

Match

Decision-Making
Level

Data-Retrieving
Level

Figure 1: Main Framework of e-AMPS

(1) Ontology base: This stores all ontology on
scheduling in terms of data schema, called
XSS, the syntax of which is adopted from
XML schema in our study. The ontology here
is defined as “a specification of a
conceptualization, or a description of the
concepts and relationships that can exist for an
agent or a community of agents.”

(2) Open Data Repository: This contains
scheduling information with standard data
structure defined by the ontology (XSS),
whose data structure is shown in Figure 2, and
is in XML syntax [1]. It’s basically a file
folder that contains all scheduling information
files of standard formats. There are two kinds
of scheduling information files for each
e-AMPS: Schedule File (schedule.xml) and
Contract File (contract.xml).

(3) Message Agent: This deals with all
manipulation of incoming and outgoing
messages following the communication
mechanism built by e-AMPS concepts. It
communicates with other Message Agent
mounted on other contact nodes, and also with
its local decision support systems through the
mapping table.

(4) DALS-speaking Decision Support Systems
for Scheduling: They are built by the host,
independently from the Message Agent. They
have independent decision support models to

3

generate specific decisions toward certain
fields. Most important of all, these decision
support systems all recognize the DALS and
use it to request for information from other
project participants as their input data [1].

(5) Message Queues: Message Queue,
physically an open access file folder, contains
all messages (requests or responses) from other
Message Agents. Each Message Agent will
access its Message Queue regularly and
automatically to react according to the
messages [1].

Project Participant

Communication

Schedule Task

Equipment

Resource

Supplier

aecXML

Name/Description

Progress

TimeLogic

TimeMilestone

TaskCompletePercent

ResourcePlan

DailyReport

Participant

Message

Time
Milestone

Resource
Plan

Progress
Resource
Supply

Header Request

ResponseContent

Sender

Receiver

EquipmentPlan

LaborPlan

MaterialPlan

Project Participant

Communication

Schedule Task

Equipment

Resource

Supplier

aecXML

Name/Description

Progress

TimeLogic

TimeMilestone

TaskCompletePercent

ResourcePlan

DailyReport

Participant

Message

Time
Milestone

Resource
Plan

Progress
Resource
Supply

Header Request

ResponseContent

Sender

Receiver

EquipmentPlan

LaborPlan

MaterialPlan

Figure 2: Data Structure of XSS

The utilization of e-AMPS can be divided into
three stages:
(1) Installation: Every practitioner in the
construction industry, i.e. Owner, A/E,
contractor, and supplier, equips a Message
Agent that is implemented by Java, regardless
of platform to be used, and therefore a
communication environment is then built
where Message Agents in the same project can
automatically communicate with each other.
When installing the system, a practitioner is
prompted to specify the local file folders for
the Ontology Base that contains the data
schema file, the Open Data Repository that
contains the scheduling files, and the Message
Queue that contains the message file. The
folder for Message Queue should also be
associated with a Uniform Resource Indicator
(URI), which can be openly accessed by
Message Agents of other project participants.

(2) Contract signing: Once the practitioner
signs a contract with another party, the
scheduling information is then prepared
according to the data schema, and is deposited
in the Open Data Repository, where the

Message Agent can access and make inquires
about the shared scheduling information.
(3) Contract execution: While the contract is
being carried out, the Message Agent checks
the Message Queue regularly and deals with all
messaging tasks automatically according to the
message it receives, such as sending the
requests originating from the Host or passing
the responses sent by other Message Agents to
another Message Agent.

The detailed design of the Message Agent can
be referred in another paper [1].

Implementation of Message Agent 1.0

Java TM language is a rich environment for
XML programming since there have been
more XML-specific resources available in Java
than in any other programming language.
There are two major reasons why Java meets
XML programming. The first is their shared
reliance on the Internet. XML was designed to
be straightforwardly usable on the Internet,
while Java was designed to be used over the
Internet. Java works well in a distributed
environment, allowing users and programs to
share information easily, while XML provides
a tool for distributing and storing that
information. The other reason is their shared
use of hierarchical structures. Java’s
object-orientation and XML’s fundamental use
of nested hierarchies is a suitable match of
combination. Programmers can easily develop
tree structures with Java that match the
structures of an XML document, making it
easy to convert XML files into instantly usable
data in Java application or applet. Due to the
above reasons, this research uses Java 2 as the
developing language. The Java TM API for
XML processing has been added to the Java 2
Platform. It provides basic support for
processing XML documents through a
standardized set of Java Platform APIs, and
other network-specific programming facilities
suitable for the implementation of e-AMPS
and Message Agent. Several programming
features are addressed first, which are
multi-thread processing, parsing with a
validating mode using XML Schema, and the
use of Remote Method Invocation (RMI).

(1) Multi-thread processing: A thread —
something called an execution context or a
lightweight process — is a single sequential

4

flow of control within a program. A single
thread process means that a process has a
beginning, a sequence, and an end and at any
given time during the runtime of the thread,
there is a single point of execution. On the
other hand, multiple threads mean that there
are more than one single thread running at the
same time and performing different tasks
within a program. Since carrying out various
manipulations of a message, the Message
Agent is implemented with multiple threads
and thus different manipulations of a message
are able to proceed independently and
smoothly.

(2) Validating documents using XML Schema:
There are two types of XML parsers, divided
by different function levels: validating parser
and non-validating parser. There are also two
methods to validate an XML document: using
Document Type Definition (DTD) or using
Schema. An XML document is valid if it has
an associated DTD or Schema, and if the
document compiles with the constraints
expressed in it. A DTD defines the data
structure of an XML document. It specifies the
order in which tags occur, what the tags are,
and how many tags are allowed. A DTD
provides a uniform format for defining the
structure and markup of an XML document.
Unlike DTDs, however, XML Schemas adhere
to the XML specification and provide better
support for XML namespaces and more data
types. It is also a recommendation of the W3C.
Schemas provide a more flexible means for
defining the structure, content, and semantics
of XML than DTDs. In many areas of
application, DTD is replaced with XML
Schema nowadays although DTDs had been
widely adopted for years.
Due to the above-mentioned advantages of
XML Schemas, the Message Agent adopts a
validating parser using XML Schema.

(3) Use of Remote Method Invocation (RMI):
Since several major manipulations of a
message are involved in passing an
XML-based message from a local Message
Agent to remote Message Agents, an approach
of file transferring from one host to another is
required by the Message Agent. Although the
protocol File Transfer Protocol (FTP) or other
message transfer methods such as SOAP is a
possible way to be applied to this end, the
Message Agent 1.0 adopts a remote access

mechanism provided by Java called Java
Remote Method Invocation (RMI) since RMI
allows an object running in one Java Virtual
Machine (VM) easily to invoke methods on an
object running in another Java VM. RMI
provides for remote communication between
programs written in the Java programming
language.

Figure 3 is the flowchart of starting up and
stopping Message Agent, which is the main
stream of the whole program. Since the
process of dealing with messages undertaken
by the Message Agent is a routine task with a
given running period, the main stream starts at
arousing a thread called MainLoop().
MainLoop() then triggers three child threads:
MessagingTask_AppendingMessage(),
MessagingTask_CheckingMessage(), and
MessagingTask_DispatchingOutboxMessage(
).

Staring up the
Remote Message Receiver

(RMR)

Booting up

Starting up the thread
MainLoop(interval)

Given a period of the thread
MainLoop() :interval

Staring up the thread
MessagingTask

AppendingMessage()
with NORM_PRIORITY

Staring up the thread
MessagingTask

CheckingMessage()
with MAX_PRIORITY

Staring up the thread
MessagingTask

DispatchingOutboxMessage()
with MIN_PRIORITY

Thread
is Alive?

Thread
is Alive?

Thread
is Alive?

No

Yes

No No

Yes Yes

Main Loop
Stops?

Main Loop
Stops?

Main Loop
Stops?

Terminate

Yes Yes Yes

No No No

Figure 3: Flowchart of Running Message
Agent

In three child threads of the thread
MainLoop(), whether the thread lifecycle of
last execution is finished or not would be
examined first. If the thread is still “alive”, the
new thread will not be triggered. Thread
priority is set mainly according to the average
running time spent. The thread that spends the
longest time averagely gets highest priority.
Figure 4 illustrates the core objects of Message
Agent version 1.0 and their relationships one
another. The class MainFrame is the visual
user interface that initiates the root class
MessageAgent of the whole program. Under

5

the root class, there are thread class MainLoop
with three child threads, five major message
processor/manipulation classes, and a RMI
class RemoteReceiver that implements the
interface FileReceiver.

MessageAgent

InterpreterDALSParser Dispatcher RequestProcessor ResponseProceossor

MessagingTask
CheckingMessage

MessagingTask
AppendingMessage

MessagingTask
DispatchingOutboxMessage

<interface>
FileReceiver

FilePacketMainFrame

RemoteReceiverMainLoop

Figure 4: The Relationship between Objects

Scenario

A hypothetical design-build project is made up
to illustrate more fully the concept of e-AMPS
and the effect of the Message Agent. The
milestone network and bar chart of the project
are shown in Figure 5.

A

G

J

I

H

F

D

C

B

K

L

Start
0

Finish
220Time(day)

E0 30(30)

30 50(20)

30 45(15)

50 65(15)

65 80(15)

45 95(40)

80 100(20)

100 140(40)

140 165(25)

140 170(30)

140 180(40)

180 220(40)

Figure 5:The Project Network of the Example

There are 12 packages enclosed in this project,
undertaken by a general contractor and his 11
sub-participants, from P1 to P11. Figure 6
shows summary bar charts of all
sub-participants under the cooperation
structure of the example project. The entire
project starts on Jan 1st, 2002 and finishes on
Aug 8th in the same year using a calendar of
7-workingday a week due to simplify the
complexity of the example.

In following paragraphs, a scenario is made up
respectively associated with a typical
communication behaviors for scheduling:
requesting for progress data. The whole
communication cycle, from the original
request to the terminal responses, is recorded
and represented as well as some important

facts and results are extracted to emphasize the
effect of e-AMPS.

G

S1 S2 S3

S4 S5 S7

S9 S10

S6 S8

S11

P01-1
P01-2
P01-3

P-I
P-J&L
H&K

I-1
I-2

P-J

P-L

J-1
J-2
J-3

L-1
L-2

C
P-F

P-AB&D
P-E&G

F-1

F-2

A
B
D

E

P-G

G-1 3/22 3/31

3/25 4/10

6/30 7/31

7/12 8/8

5/21 5/31
5/25 6/7

6/8 6/19

3/7 3/21

3/22 4/10

1/1 1/30
1/31 2/19

2/20 3/6

2/15 2/27

2/28 4/5

5/21 6/9

6/1 6/14

4/15 6/29

1/31 2/14 1/1 3/6

3/7 4/102/15 4/5

5/21 6/19

6/30 8/8

5/21 6/14

5/21 8/8

4/11 8/8

1/31 4/5

1/1 4/10

S1
S2
S3

S4
S5

S9
S10

S6
S7

S8

S11

time time time

time time time

time time time

time time

time

G-2

Request passing
path

S
S
S Starting Node

Selected Node

Not-Selected Node

Legend:

A: Task ID or Package ID
S: Subcontractor ID
d1: Start Date
d2: Finish Date

Taskd1 d2APackaged1 d2A S

Response passing
path

G

S1 S2 S3

S4 S5 S7

S9 S10

S6 S8

S11

P01-1
P01-2
P01-3

P-I
P-J&L
H&K

I-1
I-2

P-J

P-L

J-1
J-2
J-3

L-1
L-2

C
P-F

P-AB&D
P-E&G

F-1

F-2

A
B
D

E

P-G

G-1 3/22 3/31

3/25 4/10

6/30 7/31

7/12 8/87/12 8/8

5/21 5/31
5/25 6/7

6/8 6/19

3/7 3/21

3/22 4/10

1/1 1/30
1/31 2/19

2/20 3/6

2/15 2/27

2/28 4/52/28 4/5

5/21 6/9

6/1 6/146/1 6/14

4/15 6/29

1/31 2/14 1/1 3/61/1 3/6

3/7 4/103/7 4/102/15 4/52/15 4/5

5/21 6/195/21 6/19

6/30 8/86/30 8/8

5/21 6/145/21 6/14

5/21 8/8

4/11 8/8

1/31 4/5

1/1 4/10

S1
S2
S3

S4
S5

S9
S10

S6
S7

S8

S11

time time time

time time time

time time time

time time

time

G-2

Request passing
path

S
S
S Starting Node

Selected Node

Not-Selected Node

Legend:

A: Task ID or Package ID
S: Subcontractor ID
d1: Start Date
d2: Finish Date

Taskd1 d2A Taskd1 d2APackaged1 d2A S Packaged1 d2A S

Response passing
path

Figure 6: Message Passing Path of the
Scenario

On Mar 10th 2002, the general contractor
originates a request for the progress
information of all tasks whose duration
overlaps a period between Mar 15th and Mar
25th, about two weeks before the Task H&K
of participant P1 starts. The original request
without the header created by a
pre-programmed process at the general
contractor’s site is deposited in the Message
Queue, and waits for his Message Agent to
dispatch it. The Message Agent of the general
contractor detects this request and
automatically performs the HSA. Since having
no upper messengers, Message Agent of the
general contractor decides to dispatch the
request to two of its lower messengers, S2 and
S3, since the packages undertaken by S2 and
S3 meet time and scope constraints.

The request to S2 is bypassed to S2’s lower,
S6, due to Package P-F undertaken by S6
meets the constraints specified by the request.
Upon receiving the bypassed request from S2,
S6’s Message Agent perform the query
transformation and generate a response
sending back to S2, flowed by another
bypassing by S2 back to the general contractor.

Figures from Figure 7 to Figure 9 show the
sequences of message manipulations by the
Message Agents of participants involved in
this scenario, G, S2, and S6, respectively. At
the site of G in this scenario, G’s Message
Agent passes two requests (requestId: 3945 &
requested: 8379) to two of his lowers, S2 (URI:

6

140.112.10.31) and S3 (URI: 140.112.10.32),
respectively. 35 seconds later, it receives the
first one response (responseId: 3884) from S3
in which the original replier is S8, according to
the message log at the site of G. 10 more
seconds later, it receives the second responses
(responseId: 3389) from S2, in which the
response is generated by S6. 6 more seconds
later, it receives the last response again from
S3, in which the original response is generated
by S11 and is bypassed through S8 and S3 in
turns.

Figure 7: Message Manipulation at the site of
G (URI: 140.112.10.16)

Figure 8: Message Manipulation at the site of
S2 (URI: 140.112.10.31)

Figure 9: Message Manipulation at the site of
S6 (URI: 140.112.10.42)

Conclusion

Sharing of project scheduling information
among subcontractors is useful for predicting
potential delays and taking any necessary
precautions. However, there are two major
obstacles to multi-contract project participants
accessing the external information they need
efficiently: (1) the variety of data structures
that project members may use, and (2) lack of
an automatic mechanism for automatic data
acquisition. An agent-based communication
environment called Electronic Acquisition
Model for Project Scheduling (e-AMPS) is
developed to solve the abovementioned
shortcomings. Message Agent was
implemented using Java 2 and tested in IBM
PC with Windows 2000 OS. The testing and
system performance have been evaluated with
positive results.

Acknowledgement

The authors would like to acknowledge the
National Science Council, Taiwan, for
financially supporting this work under contract
No. NSC-90-2211-E-002-074.

Reference

1. W. Y. Lin, “Development of Electronic

Acquisition Model for Project Scheduling
(e-AMPS) Using Java-XML” PHD
Dissertation, Department of Civil
Engineering, National Taiwan University,
2002.

